
План занятия:

- 1. Циклы газовых турбин
- 2. Задачи

1. ЦИКЛЫ ГАЗОВЫХ ТУРБИН

Цикл газотурбинной установки (ГТУ) происходит с подводом и отводом теплоты при постоянном давлении p = const. На pv - диаграмме данный цикл можно представить следующим образом.

На рисунке цифрами обозначены: 1 - компрессор; 2 - газовая турбина (рабочее колесо турбины); 3 - камера сгорания; 4 - топливный насос; 5 - форсунки.

Цикл ГТУ характеризуется двумя параметрами:

- степенью сжатия по давлениям: $\pi = p_c/p_a = p_z/p_e$ и
- степенью предварительного расширения $\rho = v_{_{\rm Z}}/v_{_{\rm C}}$.

Характеристики процессов цикла:

ас - адиабатное сжатие

Основное свойство процесса: $pv^k = const$;

Работа процесса:
$$l_{ac} = \frac{R(T_a - T_c)}{k - 1} = \frac{p_a v_a}{k - 1} \left[1 - \left(\frac{p_c}{p_a}\right)^{\frac{k - 1}{k}} \right] < 0$$
;

Теплота процесса: $q_{ac} = 0$.

ze - адиабатное расширение

Основное свойство процесса: $pv^k = const$;

Работа процесса:
$$l_{ze} = \frac{R(T_z - T_e)}{k - 1} = \frac{p_z v_z}{k - 1} \left[1 - \left(\frac{p_e}{p_z}\right)^{\frac{k - 1}{k}} \right] > 0$$
;

Теплота процесса: $q_{ze} = 0$.

сz - изобара расширения

Основное свойство процесса: p = const;

Работа процесса: $l_{zc} = p(v_z - v_c) > 0$;

Теплота процесса: $q_{zc} = q_1 = c_p \left(T_z - T_c\right) > 0$.

еа - изобара сжатия

Основное свойство процесса: p = const;

Работа процесса: $l_{ea} = p(v_a - v_e) < 0$;

Теплота процесса: $q_{ea} = q_2 = c_p (T_a - T_e) < 0$.

Термический КПД цикла определяется формулой 1 :

$$\eta = \frac{q_1 - q_2}{q_1}$$

После несложных преобразований для цикла ГТУ с подводом теплоты при постоянном давлении можно получить:

$$\eta = 1 - \pi^{\frac{1-k}{k}}$$

Работа цикла может быть вычислена как сумма работ процессов цикла и в общем виде можно получить:

$$l = c_p T_c \eta(\rho - 1) = c_p T_a \eta \pi^{\frac{k-1}{k}} (\rho - 1)$$

Мощность цикла - это работа производимая в единицу времени:

$$N_{II} = l_{II} \cdot G, [B_T],$$

где: $G,[\kappa \Gamma/c]$ - массовый расход газа (рабочего тела).

Во всех задачах расчет следует вести для воздуха со следующими характеристиками: показатель адиабаты - k=1,4; теплоёмкость при постоянном давлении - $c_p=1005~\rm Дж/(\kappa \Gamma \cdot \Gamma pad)$, газовая постоянная - $R=287~\rm Дж/(\kappa \Gamma \cdot \Gamma pad)$; молекулярная масса - $\mu=29~\rm \kappa \Gamma/\kappa$ моль.

¹ q берутся по абсолютному значению

2. ЗАДАЧИ

Залача №1

ГТУ работает по циклу с подводом теплоты при p=const начальное состояние воздуха определяется давлением $p_a=1,2$ бар и температурой $t_a=30^{\circ}C$. Давление в камере сгорания равно $p_c=p_z=6$ бар, степень предварительного расширения $\rho=2,04$; количество подводимой теплоты $q_1=500$ кДж, а расход газа 1 кг/с. Определить термический КПД цикла, количество отводимой теплоты, параметры воздуха во всех точках цикла и теоретическую мощность ГТУ.

Залача №2

Предельная температура воздуха перед входом в турбину равна 950° C; начальное состояние воздуха определяется давлением 1 бар. Рассчитать цикл ГТУ с подводом теплоты при p = const, $\pi = 7$, $\rho = 2, 2$.

Задача №3

Для цикла ГТУ с подводом теплоты при p=const известны следующие параметры: $t_a=60^{\circ}C$, $p_c=8$ бар, $t_c=320^{\circ}C$, $v_e=2,4$ м³/кг. Определить термический КПД цикла и найти, при каких температурах горячего и холодного источников КПД цикла Карно будет иметь такой же термический КПД, т.е. найти среднеинтегральные температуры. Рабочим телом является воздух.

Залача №4

Цикл ГТУ с подводом теплоты при p=const характеризуется температурами $t_a=37^{\circ}C$ и $t_z=950^{\circ}C$; степень сжатия $\pi=5$, а начальное давление равно 1 ат. Сжатие воздуха производится осевым компрессором по адиабате. Определить работу компрессора, полную и полезную работу (работу цикла) турбины и термический КПД.

Задача №5

ГТУ работает по циклу с подводом теплоты при p=const, $\pi=7$, $\rho=2,8$; начальное состояние воздуха определяется давлением $p_a=0,8$ бар и температурой $t_a=-12^{0}C$. Процессы сжатия и расширения могут производиться по адиабате или по политропе с показателем n=1,3. Рассчитать оба цикла и построить их на pv- диаграмме.